
D-R122 674 GEMINI MICROPROGRAMMER'S HANDBOOK(U) ROYAL SIGNALS AND 1/1
RADAR ESTABLISHMENT MALVERN (ENGLAND) J KERSHAWI SEP 82
RSRE-82@i5 DRIC-BR-85562

UNCLASSIFIED F/G 9/2 N

mmhhohhomhoil

9t 0

i.

1111.8

111.25 Jill_ LA.
iiiI1

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

* *. !*,.

UNLIMITED

ID '''IIReport No. 82015*
C

ROYAL SIGNALS AND RADAR ESTABLISHMENT,

zMALVERN -

0

GEMINI MICROPROGRAMMER'S HANDBOOK

4 0

4 Author: J Kershaw

C211

8 DTICG
SELECTE

DEC 2'198 Z3

E

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE
4RSRE

Malvem, Worcestershire. 164

8 2 12 20 64Septembher 1112


~~~- ". ' . . ..

UNLIMITED

ROYAL SIGNALS AND RADAR ESTABLISHMENT

RSRE ?EPORT 82015 r

Title: GEMINI MICROPROGRAMMER'S HANDBOOK

Author: J Kershaw

Date: September 1982

SUMMARY

This Report is a compilation of documents relating to the GEMINI micro-
programmed emulation system. Its purpose is to bring together as much as
possible of the information needed by users of GEMINI, and particularly by
microprogram writers. Information on the hardware and maintenance of GEMINI
systems can be found in the GEMINI User's Handbook, published by Plessey
Electronic Systems Research Ltd.

Accession For

NTIS GRA&I
DTIC TAB
U ruoounced lju i ficat ion -.:[

, .6,-'.-

D i :; t r " b u t i o n /'. ' , -i

Availtbility Codes
.. ;nil and/or

T.)i s t Special

V..

'S 1

Copyright

* C
Controller HMSO London

1982



X Ut.!L!?' ITEg

RSRE REPORT 82015

* GEMINI MICROPROGRAI4MER' S HANDBOOK

J Kershaw

CONTENTS

1 INTRODUCTION TO THE GEMINI EMULATION SYSTEM

2 GEMINI ASSEMBLY LANGUAGE

3 GEMINI MICROINSTRUCTION FORMATS

4 GEMINI DIAGNOSTIC PROGRAM UNIT

5 GEMINI SIMULATION PROGRAM

11

6 GEMINI UNPACKING UNIT

7

-. 4

:

- S

S

Ii"

*1



UNLIMITED

-
T E 

'

1. Introduction to the GMINI emulation system.

GEMINI is a compact, relatively low cost, microprogrammed emulator. In
* its most basic form it occupies one 19 inch crate, including power

supplies and up to 512k bytes of main memory. External memory may be
connected, or the system can be interfaced to a DEC "Unibus" (TM) and use
whatever memories or peripherals are connected to that bus. A memory
suitable for direct connexion is available from Systems Reliability
Limited. GEMINI itself has been developed jointly by RSRE and Plessey
Electronic Systems Research, from an original RSRE design.

The most natural application for GEMINI is emulation of other
computers: any target machine with up to 32 bits per word can be emulated,
with average instruction times of 1 to 5 microseconds. The target can be
either an existing computer (perhaps an obsolete machine with a large
software investment) or a new architecture which does not yet exist in
hardware. Multiple emulations are possible in the same system, allowing
software proving for one target machine using the operating system and
debugging tools of another. -.

As a computer in its own right, GEMINI is extremely fast but has
limited direct addressing capability. Each of the two processors in a
GEMINI system obeys a powerful multi-function instruction every 128nS, and
can hold 4096 such instructions either in PROM or (with the optional
Diagnostic Program Unit) in RAM. The two processors share access to a 768
word scratchpad memory, 32 bits wide, with a cycle time of 64nS. An
additional 256 words of scratchpad addressing space are used to access
peripherals: large buffered memory systems, a DEC "Unibus" interface,
serial I/O controllers, or an "Unpacking Unit" which extracts variable bit
fields from a 32 bit word in 64nS.

Applications of GEMINI outside emulation might include high speed
communications, encryption/decryption, database management, and those
areas of signal processing for which 32 bit fixed point arithmetic is
adequate. Peripheral arithmetic units can be fitted if necessary. In many
of these applications the two processors could be used with high
efficiency.

-2-



A minimal GEMINI system would consist of a single processor, the
scratchpad memory, and a peripheral interface. 7he microprogram would be
held in PROM, mounted directly on the processor board. Adding a second
processor increases the power of the system by a factor rather less than
2, at some cost in microprogram complexity, but provides a limited degree
of fault tolerance: each processor can monitor the other's behaviour. -

For microprogram development, one or two Diagnostic Program Units are

needed. The small version of the DPU holds 256 microinstructions and is
designed mainly for system testing; the large version holds the full 4096
instructions. Both use an Intel 8039 microprocessor to control loading and
provide a "friendly" interface, and both allow the GEINI processors to
run at full speed. Data and commands to a DPU are sent via a standard V24
interface (up to 9600 baud) either from a conventional terminal or from a
host computer.

GEMINI microprograms are written in a block-structured assembly
language ("GEMIMA") which allows multiple source files and conditional -
assembly. Testing normally begins by running the microprogram on a
simulated GEMINI, which resides in a conventional computer and provides
detailed access to the internal state of the simulated machine. Both
assembler and simulator ire written in CORAL 66, and are available on the
PDPll, T1990, and CML %'dular One.

For final testing the microprogram can be loaded into a DPU (or two
DPU's in a twin processor system) and executed at full speed before any
PROM's are committed. Loading can be either direct (e.g. from cassette
tape) or via a host computer; in the second case the (EMINI Host Program
(also in CORAL 66) is used to connect a host machine terminal to a number
of DPU's and to take assembled microprograms from the host's filing
system.

-3 .1.-

-3- ,i



• .-.- :.- -...-

J -J

2. GEMIMA Assembly Language.

2.1 Introduction.

GEMIMA (as in Puddleduck) is a simple assembly language for the
GEMINI microprogrammed emulator. Although GEMIMA programs have a
superficial resemblance to intermediate level languages like PL/360, the
similarity is only coincidental; GEMIMA is strictly a machine level
language. The assembler itself runs on any computer accessible through the

SDL "portable" CORAL compiler e.g. PDP10, T19900, and occupies about
12kbytes upwards depending on object program size. It can take its input
from any medium which allows repeated reading of the data, e.g. floppy
disc or cassette tape, and it uses no work files. The output is a file
suitable for input to the GE4INI writable microcode store or to the
simulation program, but PROM programming data can also be produced.

Twin processor systems are programmed by producing two separate
programs for the A and B processors, using common data declarations. These
may be kept in a separate file, since the assembler allows a source
program to occupy several files which may be on a variety of physical
med ia.

2.2 Operating instructions.

in On initiation the assembler requests the names of the source files

in order, then the files to be used for output and diagnostics. The
diagnostic file receives a list of variables and labels, with their
addresses in hex and decimal, interspersed with any error messages. Labels
are marked with an asterisk. The diagnostic output ends with a message
indicating the number of stored constants generated, see Section 2.5. At
the end of the run, the message RUN COMPLETE or RUN FAILED is output to
the terminal. 0

All the operator's inputs are terminated by CR, and "backspace" (or
"cursor left") and "cursor right" may be used to correct typing errors.
The list of source files is terminated by a null file name, i.e. CR alone.

2.3 Basic principles of the language.

GEMIMA is a line-by-line language: every construct (including BEGIN
and END, see below) requires a terminator. Carriage return or semicolon
may be used interchangeably as terminators, except following a comment,

* and redundant terminators (e.g. blank lines) do no harm. Spaces (one or
more) are allowed everywhere except within numbers or words, and all
non-printing characters other than space and carriage return are ignored.
Any string of characters beginning with % is ignored as a comment, up to
(but not including) the next carriage return.

-4-_



* Integral numibers (up to 32 bits) may be written with any reasonable
base, though the default is decimal:

1230000
8R777000177
16ROOFF008A

2R11000001110

Numbers are right-justified and must be typed without spaces.

There are 16 reserved words: FINISH, HALT, A, X, Y, C, FROM4,
* DECLARE, BEGIN, END, ]RPEAT, UN4TIL, NULL, KEEP, STATUS, C(NLIMIT. These

may niot be used in any context other than that def ined in the syntax 7

(Section 2.9). All other combinations of upper case letters and digits
which begin with a letter are identifiers, invented by the programmer as

-variable names or instruction labels. Identifiers may be of any length,
but the assembler remembers only the first 11 characters. Certain
identifiers have special meanings (e.g. LFT, AND, BEI JR, CARRY) but
these are distinguishable by context; their re-use as normal identifiers

- (while possibly confusing to the programmer) is niot precluded.

*FINISH is used to terminate the last file of a program, and HALT to
terminate earlier files if any. A, X, Y, C stand for the four registers in
the GEMINI processor: each has 32 bits, though the least significant 8

- bits of C have a special use, see Section 2.7

FROM and DECLARE are used in variable declarations, see Section 2.4.U

BEGIN and END are used to delimit blocks: any sequence of
declarations and/or instructions may be enclosed between BEGIN and END,
and any variables or labels declared within the resulting block will be

*inaccessible fro,- outside. The scope rules are as in Algol or COR~AL, i.e.
forward reference is allowed to instruction labels but not to variables.6

* The most local declaration of an identifier takes precedence over any
other. Blocks may be nested to any depth.

* A block is also the unit of conditional assembly. if the word BEGIN
is followed by a list of one or more variable names, the following block
and any blocks enclosed within it will be skipped (i.e. not included in0
the object program) if all the variables correspond to address 0 (see

* Section 2.4).

The following excerpt gives one of three different instruction
* sequences after Ll (neither block, first block, or both) according to the



declarations of TEST1 and TEST2, which must be in scope before BEGIN:

Li: BEGIN TESTi, TEST2
instruction
instruction

END
BEGIN TEST2
instruction

END

Blocks enclosed within a conditional block may themselves be conditional,
but will always be skipped if the enclosing block is skipped. The contents
of a conditional block which is skipped are not checked.

REPEAT is used to generate a block of identical instructions,
usually jumps to an error routine:

REPEAT 100

will produce 100 repetitions of the preceding instruction. Any labels
attached to the instruction are not repeated. This construction is of use
mainly in writing test programs. An instruction can be repeated up to and
including a defined address by writing after it (e.g.):

REPEAT UNTIL 4000

KEEP allows identifiers to be "promoted" to the surrounding block
e.g.

BEGIN
DECLARE P, QR
instructions

KEEP P, R
END

Labels or variables thus promoted appear in the surrounding block as if
declared by the KEEP statement, and may be "kept" again if necessary.

STATUS is a built-in object which delivers up to 6 out of the first
16 condition signals, in a pattern determined by the wiring of a user
supplied DIL plug. See Section 2.6 and the GEMINI User's Handbook.

CONLIMIT is used to change the position of the constant table in the
shared data memory, see Section 2.5.

2.4 Labels and variables.

An identifier in GEMIMA may stand for an address in the instruction
memory (a label) or an address in the shared data memory (a variable). All
the identifiers declared within a given scope must be distinct. A label is

-6-



declared and associated with an address by prefacing it to an instruction:

LABELl: instruction

Multiple labels are allowed. Notice that the label is associated with the
next instruction written, so blank lines, variable declarations, or block
headers may intervene without effect:

SUBROUTINE:
LABEL2: BEGIN TEST1

DECLARE WORK1, WORK2 % see below
LABEL3: instruction

SUBROUTINE, LABEL2, and LABEL3 will correspond to the same instruction,
even though IABEL3 has a different (narrower) scope.

Variables can be declared in several ways, all syntactically
distinct from labels:

V1 = 0 % address given explicitly -
% appropriate for peripheral
% addresses or for variables
% which select conditional blocks.

FROM 10: P,Q(2),R % equivalent to P = 10; Q = 11;
% R = 13

V2 =Q % gives V2 = 11; Qmust be a
% variable which is in scope
% and already declared.

FRM P: I(8),J,K % gives I = 10; J = 18; K = 19;
% restrictions on P as for Q.

The last form of declaration allows the assembler to allocate addresses
itself, and is intended to be used by "library" subroutines which must
create workspace independently of the program in which they are embedded:

DECLARE Al(5), WORK1, WORK2

Space is allocated sequentially, starting from location 0 of the data
meory or from the end of the previous DECLARE construction. Other forms
of declaration have no effect on the allocation, so that (assuming this is
the first DECLARE construction):

DECLARE L, M, N(10)
FROM 2: F, G
DECLARE A2(6), A3(8)

will give L 0, M , N 2, F 2, G 3, A2 =12, A3 =18.

2.5 Instructions.

GEMINI obeys instructions in the order written, unless the sequence



is broken by a Control Transfer Qualifier (see below). The first
instruction obeyed when the system is switched on or reset will be the
first written, at address 1 in the instruction memory. Instruction 0 is
planted by the assembler and waits for the PWRFAIL condition (see Section
2.6) to become false. Each instruction has three main components:

condition operation part qualifiers

The first and last are optional; the operation part is always present and
will be described first.

Every GEMINI instruction contains fields for a source register, an
operation, a destination register, and a memory address. Thus the general
form of an instruction which reads from memory is:

RI : R2 OP VARIABLE

where "OP" is +, -, or one of the logical operators AND, OR, EQV. "Ri" and
"R2" are any of the four processor registers, A, X, Y, C. In practice the
assembler can insert default settings for "Ri :- " (to be the same as R2)
or for "R2" (to be zero), so the following are legal:

A + VARIABLE % for A := A + VARIABLE
X : -VARIABLE % treated as 0 - VARIABLE

If R2 and the operator are omitted the operation is a simple register load:

C := VARIABLE(3)
C -  "VARIABLE % treated as 0 + VARIABLE

Notice the use of an integer offset, which can be signed - this is allowed
with any variable, whether or not declared with a size specifier (e.g.
DECLARE Q(2)), but not with labels. Its effect is simply to add or S
subtract (at assembly time) from the declared address of the variable.

With one minor exception (see "CARRY" below) the variable may always be
read in complemented form:

A + *VARIABE
X :=-*VARIABLE (-14) ..
Y : C AND *VARIABLE
C := *VARIABLE % etc.

In every case the memory contents remain unchanged. The logical operators
AND, CR, EQV allow any combination of variable, source register, and
result to be complemented:

A Y AND *VARIABLE
C : *C EQV VARIABLE % not equivalent, i.e. XOR
:- A CR *VARIABLE % X := complement of result

Note that "*Y AND VAR" is treated as "Y - *Y AND VAR" not
"*Y := *Y AND VAR".

4her ar VARIABLE appears on the right hand side of an instruction,
a cop- .ant is equally acceptable. The constant can extend to the full 32

-8-



bits, e.g.

X :=A - 99
C =Y MND 16RFF800000
A EOV 2R1100100

The processor has a special mechanism for loading a 32 bit constant into a
register, which the assembler will use whenever possible; when this is not
possible the constant will be allocated a space in the shared data memory

* (from 767 downwards) and referred to as if it were a variable. The stored
* constants (if any) will be written once only, without duplication, when

the program is initiated.

The position of the constant table in the data memory can be changed v
by use of the C'.LIMIT directive, e.g.

C XLIMIT 700 or C99LIMIT VARIABLE(99)

which specifies the highest address to be used. The default setting is
767. Cie (at least) of the programs for a twin processor system must use
this imechanism to prevent the two constant tables overlapping in the
shared memory. The CLIMIT directive should apear once only, before any

* instructions.

A special form of constant gives access to the address of a label or
variable:

Y :=A + >LABEL % forward reference to labels only
X := tVAR) % offset with variables only

The characters > and t are interchangeable.

s oly one instruction changes the data memory contents. Its general S
form is

VARIABLE (7) , R1 R2

and it copies R2 to R1 and the variable. hRl" maybe oitted if not
A needed. In either case R2 remains unchanged. A memory location and a

register may be set to zero by writing

VARIABLE, Rii. 0

but in this case the register cannot be omitted. Complementing is not
allowed in this operation.

A Y=
@X A

The effect of this is to use the present contents of the X register as the
memory address; if the instruction also changes X the value used for
addressing will be the value before the change.

regstr aybe ettozeo y witng-9..



The add and subtract operations (and the derived "load" operation)
have variations illustrated by:

X :C + VARIABLE+l1
Y - VARIABLE - 1 % toy : implied
A : VARIABLE + 1
A :-VARIABLE(-2) - 1

The variable may be complemented as usual. The final variation does not
allow complementing:

Y :VAR + CARRY
*Y A +i-VAR +CARRY

Y A -VAR -CARRY
Y : -VAR-CARRY

"CARRY" has value +1 if the CARRY condition is true when the instruction
begins (see below) and 0 otherwise.

The remaining instructions operate on registers alone; although the
memory address is still present it is ignored by the hardware and is not
specified in the program. As before, the assignment may be omitted if the

* source and destination registers are the same.

*C := A LEFT 1 % left shift 1 place, fill with 0
X LEFT I + 1 % left shift and fill with 1
Y LEFT 1 + CARRY % fill with CARRY condition

% (see below). Note that LEFT
% may also set CARRY.

A :=X +1I % increment
Y - 1 % decrement

The source register may as usual be omnitted when it will appear as zero.
"A :=LEFT 1 + CARRY" can be used to load the carry bit into a register.

A :=C % copy. Neither may be omitted!
A :=*C % copy complemented. Ditto.

Y :=STATUS % load condition bits into a register

Finally, if no operation part is needed the word NULL can be used:

NULL, GOTO EXIT % see Section 2.7

2.6 Conditions.
41

A condition may be typed at the beginning of any instruction. Its
position emphasises the fact that the test is done before the operation
part of the instruction, but it takes effect only at the end through a
CALL, GM1, or RETURN qualifier (see Section 2.7). If one of these
qualifiers is written without a condition, it will be obeyed
unconditionally. It is important to remember that the operation part of an

-10-



instruction, and any qualifiero other than CALL, GOTO, or RETUTJ, are
always obeyed regardless of conditions. If the condition written is false,
the instruction will be followed by the next one written.

There are 31 conditions (the 32nd is the default condition ?TRUE),
16 of which test the state of a register at the start of the instruction.
They are separated from the operation part by a comma:

?A = 0, ?A <> 0, ?A >= 0, ?A < 0,•
?X =0, ?X <0 0,

?Y = 0, ?Y <> 0,
?C = 0, ?C <> 0, - bits 0..7 only

?AODD, ?AEVEN, -- bit 0 set or clear
?XODD, ?XEVEN,

?ANORM, - "A" bit 31 different from "A" bit 30.
?ANAN, - "A" not approaching normal, i.e. bit 29

is the same as bit 30. Used in
floating-point normalisation.

The remaining conditions test other aspects of the processor's status, or
signals from outside:

?OVF - the last arithmetic operation which
changed the A register overflowed. Almost
any instruction involving +, -, or LEFT
counts as arithmetic, including A := X+I,
A := +VAR, A := -VAR, but not A := VAR or
A := *VAR. "A := constant" does not count,
even if the constant is signed, except in
the special case where the constant has
value +1 (however typed) which leaves
both ?OVF and ?CARRY false.

?CARRY, - the last arithmetic operation which
changed A caused carry. Operations other
than arithmetic on A leave carry and
overflow unchanged.

?CLOCK, - The system clock is about to be stopped by
the diagnostic program unit (see Section 4).
About 100 microseconds warning is given. No
time-critical operation should be started
while ?CLOCK is true. w

?PWRFAIL, -- the power supply is below nominal voltage.

This condition becomes true about lmS
before power failure, and remains true
for several mS after switch-on.

?DIAG, - signal from the optional diagnostic unit.

-11-



T

?EXTl..8, -- signals from peripheral interface units.

?WAIT2, -- the other processor has set WAIT2 (see
Section 2.7). This condition can only
usefully be tested in an instruction which
contains a wait qualifier, since the
signal is cleared when the wait ends.

?TIMEOUT, -- the waiting time limit (256 micro-
instructions) has been exceeded, i.e.
the other processor has failed. This
condition remains set until the system
is re-initialised.

Conditions may be spaced out to taste, as long as words are not broken.
? A = 0, or ? XEVEN, are acceptable but ? A ODD, is not.

2.7 Qualifiers.

These are subsidiary functions which can be performed at the same
time as the operation part. Some modify the main operation, others are
independent. They fall into groups which share the same bits in the
instruction and may not be used together, but otherwise their number and
order are unrestricted. Control transfer qualifiers are best written last,
as they are chronologically the last to be executed. Commas are used as
separators throughout.

Shift group:

SRO -- shift right, fill with zero. The source u
register of the main operation is
shifted one place to the right before
being operated on, filling bit 31 with 0.

SRS --- as SRO, filling bit 31 with a copy of the
original sign bit which is now bit 30.

SRL as SRO, filling bit 31 with a copy of the
initial value of the link flip-flop.

All shift qualifiers set the link flip-flop to the initial bit 0 of the
source register, which would otherwise be lost. Note that the shift
qualifiers operate after the register contents have been sent to memory, --

4S

12

-12-



' -.

so the instruction

VAR, A : X, SRS

will leave X unchanged, VAR = X, and A = X/2.

Count group: -2 ]
, C-I subtract 1 from the least significant 8 bits

of C. The top 24 bits are left unchanged
so 0 counts to +255 and +256 counts to
+511. Note that "C := C-l" as an operation
part would apply to all 32 bits. Conditions
?C=0 or ?C<>0 apply to the counting bits only;
if used in the same instruction as the ,C-1
qualifier they refer to the initial value.
If the operation part of the instruction
specifies C as result register, the count
qualifier is over-ridden and has no effect.

Wait 1 group:

WAITI - stop the processor until the other processor
reaches an instruction containing either
wait qualifier. The period of waiting is
from zero (if the other is already waiting)
to 256 whole instruction cycles, when
the timeout operates.

Wait 2 group: I
WAIT2 -- as WAIT1. The processor can find out how it

was released by using the ?WAIT2, and
?TIMEOUT, conditions.

Control transfer group. These qualifiers may be conditional: if the
instruction in which they appear begins with a condition, the control
transfer will be obeyed only if the condition was true at the moment the
instruction began. If the condition was false, the succeeding instruction
will be the next one written and the qualifier will have no effect - in
particular, the subroutine stack will not be affected. If no condition is
specified, any control transfer will be obeyed unconditionally.

GOTO LABEL - jump to the instruction with the

corresponding label. Forward reference
is allowed, but the label must be in
scope (see Section 2.3).

, @Y - jump to the instruction whose address .2
was in the Y register at the start of
the instruction.

-13-



.-- 7-7 --7

CALL LABEL -- as GTO, but first push the address of
the next instruction written on to a
stack. The stack is in fact a 4 word
memory addressed by a 2 bit up/down
counter which will "wrap round" in
either direction, so subroutine
nesting needs care!

, CALL @Y - as GOTO @Y, with return link.

, --TURN- return from subroutine and pop stack.

-14-1

*6 St

--lit

-14- ___



m.V

- .-

2.8 Program Examples.

7b transfer an array of constants into the data memory:

DECLARE TPOWEM(5) % table occupies 5 words

X :- >TENPOWERS % data memory address
Y :- >DUMPER % subroutine address

A : 1, CALL @Y
A : 10, CALL @Y
A :- 100, CALL @Y % note 1 instruction -

.A : 1000, CALL @Y % - for each constant
A :- 10000, CALL @Y

DUMPER: BEGIN % subroutine
@X :- A
X+ 1, RETURN
ENID

This technique is used by the assembler to set up the table of constants
when a program is initiated.

,..-.

* The second example is a subroutine to multiply two 16 bit numbers
together, giving a signed 32 bit product. The two operands are assumed to
be in memory locations MULTIPLIER and MULTIPLICAND, occupying the least
significant 16 bits of the GEMINI word with sign extension to 32 bits. The
twos-complement result is assigned to the variable PRODUCT.

~-15-



MULTIPLY:
BEGIN

DECLARE WORKI % one workspace needed

C := 0 % sign flag for product

% make both operands positive, keeping the sign of the
% product as bit 0 of C

A := MULTIPLICAND, CALL SI(NCHECK
WORK1 := A
A := MULTIPLIER, CALL SIGNCHECK

% choose the smaller of the two operands as the multiplier

A - WORK1
?A<0, A + WORK1, GO0 NOSWAP
Y :=A
A : WORK1, GOTO SWAPDONE

NOSWAP: Y :- WORK1
SWAPDXNE: X := 0

% multiplier is now in A, multiplicand in Y. The product
% will accumulate in X as a positive 31 bit number

LOOP: ?AODD, A := A, SRO, CALL AM")
?A<>0, Y := Y LEFT 1, GOO LOOP

*1 . . t€.

% check the sign of the product

A C
?AEVEN, PRODUCT := X, RETURN % positive result
X : -PRODUCT
PRODUCT := X, RETURN % negative result

% signcheck subroutine, returns modulus of A & records sign

SI(NCHECK: ?A>0, X :- *A, RETURN
A :- X + 1, C - 1, RETURN

% add subroutine, adds the shifted multiplicand to the
% partial product in X

ADD: WORK : Y % workspace needed
X : X + WORK1, RETURN

END

-16-



2.9 GEM4IMA syntax.

Non-terminals are in lower case, all terminals in upper case
including punctuation symbols such as COMMtA, EQUALS. Empty alternatives
are written <void>. Commuents follow % as usual. Somne occurences of ID
correspond to built-in words such as LEFT, CARRY, AN4D, etc: these words
are distinguishable by context and are not reserved.

program =statementlist FINISH;

statementlist =<void>,

statement terminator statementl ist;

terminator =NEWLINE,

SEMICOLON;

statement =<void>,

BEGIN skipcondition,
END,
KEEP keepl ist,
CONLIMIT INT,
CCNLIMIT ID offset, -

HALT,
ID EQUALS INT, %declarations
ID EQUALS ID offset,

* DECLAR.E declist,
FROM INT COO declist,
FROM ID offset COLON declist,
instruction, % all instructions
ID COLON statement, % anything labelled
REPEAT INT, % "int" repetitions
REPEAT UN~TIL INT; %until address "int"

skipcondition -<void>,
skiplist;

skiplist aID offset, %note offset allowed
ID offset COMMA skiplist;

keeplist aID,
* ID COMMA keeplist;

-17-



declist = dec,
dec COMMA declist;

dec = ID,
ID OPEN INT CLOSE; % size in words

instruction = condition operation quals,
condition COMMA operation quals, % comma is optional
operation quals;

condition = QUERY ID,
QUERY regname relop INT; % A<O, X=O etc.

reg = regname,
ASTERISK regname;

regname = A,
X,

relop = EQUALS,
LESS,
GREATER EQUALS,
LESS GREATER; % not equals

operation var BECOMES re, % write to memory
var COMMA reg BECOMES reg,
var COMMA reg BECOMES INT, % INT is zero
reg BECOMES reg,
reg BECOMES reg optail, % R1 := R2 OP VAR
reg BECOMES loadtail, % R2 anitted
reg optail, % R1 omnitted
NULL;

optail = PLUS object incpart,
MINUS object decpart,
logleft; % LEFT and logic

logleft = ID object incpart;

-18-



object =var,
coflst;

loadtail -const,
PLUS const,
MINUS const,
var incpart,
PLUS var incpart,
MINUS var decpart,
logleft,
STATUS;

const =con,
ASTERISK con; % complemented

con INT
POINTER ID offset;

var ID offset,
AT X,
ASTERISK ID offset,U
ASTERISK AT X;

* offset =<void>

OPEN sgint CLOSE;

sg int INT
PLS INT,
MINUS INT;

incpart =<void>,
PLUS INT, % rNT must be 1
PLUS ID; % ID is CARRY

decpart -<void>,
MINUS tNT, %as incpart
MINUS ID;

-19-



quals =<void>,

COMMA qual quals;

qual =ID, % single words 1
ID ID, % CALL, GYO ID
ID AT Y, % CALL, GYLO @Y
C MINUS INT; % C-

lip -1



3. GEMINI Microinstruction Formats.

All GEINI microinstructions occupy 48 bits, in one of two formats:

Arithmetic and logic, in which the microinstruction is divided into 13
non-overlapping fields. The width and position of each field is fixed.

"Load constant", in which 6 of the fields are takon up by a 32 bit
literal constant, one is ignored, and the remaining 6 are interpreted as
for arithmetic and logic.

3.1 Arithmetic and logic format.

Each field is identified by a unique key character (see Sections 4 and 5)
which gives a clue to its significance. In order from most to least
significant bit, the fields are:

A (10 bits) Address of variable in shared data memory, or peripheral
address. Held complemented.

X (1 bit) Index bit. If set, the A field is ignored and the initial
contents of the X register (l.s. 10 bits) used instead.

F (5 bits) ALU function, see table below.
* '0

W (2 bits) WAIT bits. (WAIT2 is m.s.) If non-zero, the processor
will wait till the other processor reaches a microinstruction with a
non-zero W field.

> (2 bits) Right shift control. The shifter operates on the data sent
from the source register to the ALU (but not on data sent to thk,, O
shared memory) and if activated shifts one place to the right
preserving the old bit 0 as LINK. For treatment of bit 31 see
table.

D (2 bits) Destination register, see table.

S (4 bits) Source register, one bit only. See table.



---V

? (5 bits) Condition. If the condition is true when the
microinstruction begins execution the P, N, and J fields will be
interpreted as described, otherwise these fields will be ignored and
the microinstruction will be followed by the one at the next higher
address.

(1 bit) C-I qualifier. If set, subtract 1 from the l.s. 8 bits of
the C register. 0 will become 255, 256 will become 512. Note that
the C=0 and CMO conditions apply to the l.s. 8 bits only.

C (I bit) Constant. The microinstruction will be interpreted in
"load constant" format, see below.

P (1 bit) Procedure: if the condition is true, push the address of

the next microinstruction on to the stack.

N (I bit) Next microinstruction address selector, see table.

J (12 bits) Jump address, used only if condition true and N = 3.

3.2 "Load Constant" format.

The A X F W > and J fields (in order from m.s. to l.s.) form a 32 bit
literal constant, whose complement will be placed in the destination
register. The S field is ignored, but the remaining fields are interpreted
as normal. N = 3 should not be used, since J is part of the constant.

-6

I-

S m '

Uv



3.3 Numerical values of fields.

S = source register, D = destination register,* M = contents of data memory/peripheral location.

F > bit 31 ? S D N

0 D := STATUS LINK TRUE zero C RETURN
1 NULL old b3l OVF C A @Y
2 NULL zero CARRY A Y next
3 NULL no shift WAIT2 - X J field
4 D S TIMtOUT Y
5 D: S- 1 DIAG -
6 D:= S - M NWRFAIL -
7 D: S - M - 1 CLOCK -
8 D:= S - M - CARRY A<0 X
9 D: S + M A<>0 -
10 D:= S + M + 1 X<>O -
11 D: S + M + CARRY Y<>0 -
12 D: S LEFT 1 C=O -
13 D: S LEFT 1 + 1 AOD -
14 D:= S LEFT 1 + CARRY XODD -
15 D: S + 1 ANAN _
16 D :i*S A>=0
17 *D: S AND M A-018 D :*S OR M X=0 119 D: -1 Y-0

20 *D: S OR M C<>0
21 D :=*M AEVEN1
22 D:= S EBV M XEVEN
23 D:= S OR *M ANOR.4
24 D :=*S AND M EXTI
25 *D: S EQV M EXT2
26 D M EXT3
27 D: S OR M EXT4
28 D:= 0 EXT5
29 D: SAND *M EXT6 -- A
30 D:= SAND M EXT7
31 M, D:= S EXT8



4. GEMINI Diagnostic Program Unit.

* A GEMINI system is controlled, not by a conventional "operator's
panel", but by a simple commurand language input (either from a keyboard or
from a host computer) to a Diagnostic Program Unit. The interface is to
V24 standard, and will adapt automatically to any data rate in the
following list: 110, 300, 600, 1200, 2400, 4800, 9600 baud. All outputs
have even parity, but input parity is ignored.

The Diagnostic Program Unit exists in two forms, large and small.
The large unit holds 4096 instructions which can be loaded, verified,
inspected, and modified on-line. In addition it can manipulate the GEMINII
system clock, and monitor the instruction addresses produced by the GEMINI
processor. The small DPU holds 256 instructions, but contains in addition
a 15 word data memory which can be addressed by the GEMINI processor as
locations 1008 to 1022. The least significant 8 bits of location 1008 are
continuously displayed on LED indicators, and the whole of this memory can
be inspected by commnds. The small unit also has the ability to monitor
the GEMINI data bus, the data memory address, and the clock signals. It
can load and execute on commiand (either from the keyboard or by pressing a
button) a 256 instruction GEMINI program stored in an internal PROM, thus

* allowing the system to be checked without the use of a keyboard or host
-* computer.

Commnands to a DPU consist of a two letter mnemonic, followed in some
cases by parameters, and terminated by carriage return. No action is taken
until the terminator is input, and up to that point "backspace" (or

-- *"cursor left") and "cursor right" may be used to correct errors. Spaces
are ignored everywhere except within decimal and hexadecimal parameters,
see below. Illegal commnands are reported with the message NO! but have no
other effect. All inputs are echoed unless the cursor reaches either end
of the line, where its movement will stop (but see below under LP and OP).
A null commnand (CR alone) will provoke a new prompt.

When it is ready to receive a conmand, the DPU sends a prompt
*message to the operator. The last character of this message is always

"BELL" (character 7); a host computer may use this as the trigger for the
next commnand. The prompt message begins on a new line, and consists of a
letter (G or D), followed by a decimal number, followed by one of the
characters > + or -. The letter indicates whether the GEMINI program (in
PROM) or the diagnostic program (in RAM) is being executed, the niumber is
the address of the GEMINI instruction about to be obeyed, and the
character shows whether the GEMINI clock is running, stepping under the
control of the diagnostic system, or stopped.

When first switched on a DPLI assumes state G 0>, allowing the GEMINI
processor(s) to run on their internal PRt~s, and prompts the operator at

W

-24-



110 baud. he input can be synchronised to the data rate in use by sending
a succession of "delete" characters (3 per step in the table of data rates
is sufficient) followed by CR, which should provoke NO! and a legible
prompt. If the DPU occupies the right-hand slot in the crate, the prompt
will be indented 10 columns (or 40 if option 1 is set, see below).

A GEMINI system can operate without a DPU, provided its program is
in PROM. In this case the system starts automatically at instruction 0
when powered on.

4.1 Commands and parameters for the small DPU.

<integer> is an unsigned decimal number, terminated by any non-digit e.g.
space or CR. Leading zeros may be anitted.

<hexnumber> is a hexadecimal number of up to 8 digits, terminated by any
character other than 0..9 or A..F. Leading zeros may be omitted.

<boolean> is a single letter T or F.

Unless otherwise stated, commands may be used at any time and leave the

system state unchanged.
S

LP <integer>
Load program using data rate <integer> baud from the table 4ove. The
parameter may be omitted if the data rate is the same as for commands,
and the rate will revert automatically at the end of the program input.
Input data is as produced by the GMIMA assembler, and may be echoed
(with normal error-correcting facilities) or not according to the
setting of option 2 (see under OP below). After completion the system is
left stopped and reset, with the diagnostic program (i.e. the one just
loaded) selected (state D 0-).
Error messages:
NO!

Data rate not acceptable. 0
TOO BIG

Program is too big for memory, 256 or 4096 instructions.
INPUT ERROR

Input checksum has failed.
02 IA FAILED

A memory location cannot be read back correctly, in this case at byte
2 bits 1, 3, and 4. Only the last error found is reported.

FAILED
Program sumcheck fails - see VP.

RS
Reset the GEMINI instruction counter to zero, and continue in the same
state as before.

-25-



GO
Allow system clock to run freely. State becomes G n> or D n>; the
instruction address in this and subsequent prompts will be valid but
(obviously) out of date when printed. If several prompts give the same
or related addresses while the clock is running, the microprogram is
probably looping.

ST
Stop system clock. State becomes G n- or D n-. This command leaves the
GEMINI processor in the second quarter of its instruction cycle (as does
RS if the system is already stopped), when all the system buses carry
significant data. To do this it may have to step the system clock up to
3 phases. If the clock fails to step on correctly the message CLOCKS is
printed; this message may also appear while stepping (see SN and SU).

RI <integer>
Read the instruction at address <integer> (in either GEMINI or -U
diagnostic memory, as currently selected), decompose it into 14 separate
fields, and print it with key characters e.g.

A3 X0 F9 WO >3 D1 S2 ?0 -0 CO P0 N3 J366 #00F6 CE91

The first 13 fields &e in decimal, and correspond to the
microinstruction fields described in Section 3:

A 10 bits Data memory/peripheral address (complemented)
X 1 bit Use contents of X as data address
F 5 bits ALU function - see table in Section 3
W 2 bits WAIT2 (m.s.) and WAIT1 (l.s.)
> 2 bits Right shift control
D 2 bits Destination register
S 4 bits Source register (one bit only set)
? 5 bits Condition
-1 bit C-1 qualifier
C 1 bit Constant - load 32 bit number to register
P 1 bit Procedure (or Push) i.e. CALL qualifier
N 2 bits Next microinstruction address selector
J 12 bits Jump address

The last field is in hexadecimal, and is the complement of the 32
"constant" bits in the microinstruction. It is significant only if the C
field is 1.

LI <integer> <field list>
Change the specified fields of the instruction at address <integer>. -

Each field is typed as a key character (see RI) followed by a
<hexnumber> (# only, note no spaces) or an <integer> (all others).
Fields may appear in any order, and fields which do not appear in the
list are left unchanged. Spaces before and after the key character are
optional, unless a <hexnumber> is followed by a C or D field when a
space is essential e.g. #lFFF Cl D2. An A or * field will be

-26-



complemented before being stored. The # field overlaps the AXFW>J
fields; in cases of conflict the last to be typed "wins". See example in
Section 5.

NI <integer>
- Print the instruction at address <integer> as for RI, then replace it

with the null instruction A := A. The object is to reduce the number of
fields which must be typed in a subsequent LI command. NI or LI will
give the error message No! if the GEMINI program (i.e. PROM) is
selected.

DP
Select diagnostic program (i.e. RAM). Changes state to D 0-.

GP
Select GEMINI program (i.e. PROM). Changes state to G 0-.

RF
Read flags. Prints external conditions as IF, 2T, 3F etc. An external
condition may become TRUE as a result of an LF comand or because a
peripheral has set it - logical OR applies. Flag 9 is DIAG.

LF <integer> <boolean>
Load flag <integer> with <boolean>. The Diagnostic Unit sets all flags
initially FALSE, but flags 1 to 8 may still be set by peripherals.

CL lp
Print clock states, in the order Tl, Tl, T3, T, WAIT1, WAIT2,
INITIALISE, e.g. 0101 01 1. Note that the last three are false if high.
The clock state shown (0101) is the one which follows use of the ST
command.

OP <integer>
Set options. <integer> is a sum of values as follows:
1: If set, cursor operations appropriate to a VDU terminal. Otherwise,

as for a hard-cowpy terminal.
2: If set, "LP" data will be echoed with normal cursor movement

facilities. Otherwise no echo, data will be accepted as fast as it
can be sent at the selected data rate. --

4: If set, "LP" size limit 4096 instructions. Otherwise 256.
8: If set, LED sampling of location 1008 disabled. This prevents any

manipulation of the GEMINI system clock unless explicitly commanded.
If two Diagnostic [nits are used in a twin processor system, one must
have option 8 set. v

The initial setting of the options is controlled by 4 switches labelled
1, 2, 3, 4 for options 1, 2, 4, 8.

-27-



RD <integer>
Read a location of the 15 word data memory as 8 hex digits. (integer> is
masked to 4 bits and used as the address; location 15 exists but usually
contains rubbish. This memory can be written only by the GEM INI
processor adjacent to "this" Diagnostic unit -if the other processor is
p resent it may have a Diagnostic Unit of its own but will not "see" the
data memory in this one.

VP
Verify program. The program in the GEMINI or diagnostic memory
(whichevler is selected) is sumchecked and compared with the sumcheck
from the last LP operation. Error message: FAILED.

Push-button test. Load the diagnostic program memory from the internal
PROM, reset, and enter state D 0>. Message PB TEST is output, and FAILED
if the program does not sumcheck af ter loading. Result of pressing
button is identical.

The remaining 6 commnands are accepted only if the GEMINI clock is either
stopped or stepping under diagnostic control. Otherwise the message
RUNNING is given.

SC
*Step clock one data-memory cycle, i.e. 2 clock phases, half a processorAi

cycle. This allows the other processor in a twin processor system to be
monitored to a limited extent, using the RM and RB commands.

Read the GEMINI data memory address in decimal, with READ or WRITE as
appropriate. The address is generated by the adjacent processor only in
the first half of its instruction cycle, i.e. in clock states 0110 or
0101. In the second half of the cycle the address comes from the other
processor (if it is present).

V RB
Read the GEMINI data bus as 8 hex digits. In the clock state following
ST (0101) the data bus carries either the output from the processor
(WRITE) or the response from the memory/peripheral (READ). The other

* processor may be monitored by preceding the RB or IRM command with SC.
Note that ST will restore the clock state to 0101 even if the system is
already stopped.

-28-



SN <integer>
Step on <integer> instructions, at an effective instruction time of
about 130 microseconds (the speed may improve in later versions). This
command may be abbreviated to <integer> alone, and SNO (or just 0) is "
treated as SNI. The largest integer acceptable is 65535.

SU <integer>
Step until the instruction at address <integer> is about to be obeyed.
SN and SU set the state to D n+ or G n+, and can be aborted while in
progress with an ST command. When either command is completed the state
reverts to D n- or G n- and a new prompt appears.

4.2 Limitations of the large Diagnostic Program Unit.

The large Diagnostic Unit lacks the hardware to carry out the RF,
LF, CL, RD, PT, R4, and FE conands. It will accept the commands, since it
uses the same software, but will give meaningless results. Pr will
overwrite the program memory with rubbish and then attempt to execute it.
ST will leave the clock state random.

-29-

-29-



5. GEMINI Simulation Program.

The simulator is a CORAL program which takes a GEMIMA assembler
instruction time is about 660 microseconds, or one fifth the speed of the
DPrJ in stepping mode. Its user interface is as similar as practicable to
the GEMINI Diagnostic Program Unit interface. Some of the commands to the
DPU have no equivalents in the simulator (e.g. those which manipulate the
internal GEMINI clock, and those whose main purpose is to help find
hardware faults); conversely the simulator has some facilites which are
not available in the DPU because of hardware limitations. There is one
fundamental difference between the two which is not obvious from a simple
list of facilities: the Diagnostic Program Unit will accept user inputs at
any time, whereas the Simulator "goes dead" while it is obeying a command.

The rules for typing inputs to the Simulator are the same as for the
DPU, except that on some host systems the cursor behaviour at the ends of
a line may differ. The prompt message is rather different: the letter is
omitted (since only one instruction memory is present) and the state
character is always "-". 1he final character, as always, is "BELL".

Errors during execution (e.g. stack full or empty, program address
outside the range loaded) cause a message to be printed and the user
prompt to reappear. The instruction address will be that of the offending
instruction.

The simulator has two peripherals built in: a standard unpacking
unit occupying locations 768 to 799, and an external interface (base
address 832, adjustable by macro at compile time) connected to a simulated
Systems Reliability memory of (currently) 1024 bytes including tags. All
the tag and byte handling mechanisms work except that none of the external
conditions will be set -the memory's response appears to be
instantaneous.

Peripheral addresses outside the range of the built-in pair generate
a message to the operator, either

* <instr address> - READ <peni address> INPUT 0

or <instr address> - WRITE <peri address> DATA <hexnumber>

in the first case the operator must input a hex numnber. Af ter either

14 message the Simulator will prompt for a new command.

-30-



-I

Error messages.

NO!
Command is illegal, e.g. mneuonic not recognised, not enough parameters,
address specified is out of range, instruction at address specified
(command RI only) has not been written.

TOO MANY RETURNS!
The subroutine stack has been exhausted. The stack is actually a 4 word
RAM addressed by a 2 bit counter, as in the AMD 2909 hardware; CALLing
more than 4 deep is allowed as long as the over-written return addresses
are no longer needed. The simulator marks each return address as it is
used and gives this message if any are used twice.

MORE THAN 1 SOURCE REGISTER!
Source register field is not a single bit. Usually indicates a jump
outside the loaded program, since unwritten instructions are marked with
source register - 15.

TOO BIG!
Program being loaded will not fit in the simulator store (1024
instructions in the Modular One version).

SUMCHECK FAILED! "
On program loading. The program can be run, at your own risk.

5000 INSTRUCTIONSIl"i -
Limit for SU command. Input another SU to continue.

EXTERNAL ADDRESS TOO BIG!
An external memory cycle has been started with an address outside the
Simulator range (1024 bytes in the Modular one version).

5.1 Differences between Simulator and DPU commands.

The Simulator does not recognise the commands GO, ST, DP, GP, CL,
OP, VP, PT, SC, R, RB.

The commands LP, RW, LF, RD, SU have differences of interpretation
described below:

LP <filename>
The parameter is a file name in whatever convention the host system
uses, specifying the source of the program. The controlling terminal may
be used, though the GEMIMA output format is not designed for manual
input. Possible error messages are TOO BIGI and StUMCHECK FAILEDI

-31-



RF
14 booleans are printed: external conditions 1 to 8, DIAG, TIMEOUT,
"IOWERFAIL, CARRY, OVERFLOW, LINK.

LF <integer> <boolean>
A " Any of the 14 flags may be loaded, but CARRY, OVERFLOW, and LINK are

likely to be modified by the simulated program.

RD <integer>
Any address from 0 to 1023 can be read, though peripherals may not give
meaningful results.

SU <integer>
If neither the address specified nor a peripheral operation has been
reached after 5000 instructions have been processed, the Simulator will
re-prompt.

The remaining commands are peculiar to the Simulator:

,-, LA <hexnumber>
Load GEMINI "A" register. Similarly LX, LY, LC.

RA
Print GEMIINI "A" register. Similarly RX, Ry, RC. S

CA <integer> <hexnumber>
Load the instruction "A := <hexnumber>" into the program memory at
address <integer>. Similarly CX, CY, CC.

LD <integer> <hexnumber>
Load the data memory with <hexnumber> at address <integer>. Address
range 0 to 767 only.

LE <integer> <hexnumber>
Load external memory byte at address <integer> with <hexnmber>. Only 9
bits are significant, bit 8 is the tag.

"V RE <integer> S
Print an external memory byte (including tag) as 3 hex digits.

-32-



LT <filename>
Load target machine memory, i.e. do a succession of LE comands using
data from the file. The format consists of a list of <integer>
<hexnumber> pairs, each pair terminated by either carriage return or
semicolon. Spaces may appear anywhere except within the integer. The
terminator is an asterisk appearing in place of the next integer.

e.g. 0 21; 1 02
2 OB; 3 12
4 02; 5 C3

The error message NO! appears if the format is incorrect or an address
is out of range.

TE
Terminate the simulation program.

5.2 Example of a simulation run.

G&MINI SIMULATOR
0-LP JK2/MULTIPLY
0-RI3

A1008 XO F31 WO >3 Dl S2 ?0 -0 CO P0 N3 JO #FC20 CFFF
O-R1 99

NO!
O-NI99 "

A1023 XO FO WO >0 DO SO ?0 -0 CO PO NO JO OFFFF FFFF
O-LI99 A300 F19 S8 -1 N3 ?23 J106
0-RI99

A300 XO F19 WO >3 Dl S8 ?23 -1 CO P0 N3 J106 #4B26 CF95
0-LF2 T

"-RF
1F 2T 3F 4F 5F 6F 7F 8F 9F 1OF 11F 12F 13F 14F
0-LX 01234
0-LY3
0-RX

0000 1234
0-LDO llAAAA
0-30
3-WRITE 1008 DATA 0000 369C
0-RDO
0000 0003
0-TE

-33-



6. GEMINI Unpacking Unit.

The Unpacking Unit (Field Extractor, Barrel Shifter) is a peripheral which
allows GEMINI microprograms to extract bit fields (from 1 to 32 bits wide)
from either of two source registers in a single memory cycle.

It recognises any of a block of 32 addresses, starting at either 768 or
800 (switch-selectable). Fifteen distinct bit fields are available at any
one time, but the fields may be changed dynamically by writing new values
into the shift and/or mask tables (see below). Both tables are undefined
at power-on.

WRITE to relative address:

0 Load source register 1. -

1..15 Load shift table entry for field 1-.15. The
shift is a 5 bit niuber specifying the least
significant bit of the field required.

16 Load source register 2.

17..31 Load mask table entry for field l..15. The
mask is a 32 bit pattern whose complement will
be ANDed with the shifter output, thus the
mask should be right-justified and contain 0's
for the wanted bits. Wanted bits need not be
contiguous but should not extend beyond source
register bit 31! Notice that GEIIIMA allows
almost any constant or variable to be
complemented, see example.

READ from relative address:

0 Undefined. A field spanning all 32 bits can be
used to read the whole of a source register if
necessary.

l1_15 Read f ield 1_.15 from source register 1. The
pattern in the source register is shifted right
and the result ANDed with the complemented mask.
The final result is complemented again and
delivered to the processor. The source
register itself is left unchanged.

16 Undefined.

17..31 Read field 1..15 from source register 2.



Example -use of unpacking unit.

FROM 768: SOURCEl, SHIFTi
SFROM 784: SOUCE2, MASKQ

SiFIELDi = SHIM~
S2FIELDl - MASKi

A:-17 % bits17 to..
SHIM~ A
A :a *16R3FF ... 26 LlO bits)
MASKI : A %note mask is complemented

Y :aANYTHING
SOURCEl aY
A :-X + *SlFIE~lD % add bits 17..26 of "ANYTHING"

% note field also complemented

1 -77

-29



DOCUMENT CONTROL SHEET

Overall security clissification of sheet ................
(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference .. Report Security
la * .ClTssificationREPORT 82015 UnclassA4 'd-

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known) ROYAL SIGNALS AND RADAR ESTABLISHMENT

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

GEMINI MICROPROGRAMMERS HANDBOOK

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date Do. ref.

KERSHAW J,

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

GEMINI

continue on separate viece of carer

Abbtract

This Report is a compilation of documents relating to the GEMINI micro-
programmed emulation system. Its purpose is to bring together as much as
possible of the information needed by users of GEMINI, and particularly by micr -

program writers. Information on the hardware and maintenance of GEMINI
systems can be found in the GEMINI User's Handbook, published by Plessey
Electronic System Research Ltd.



FIL E6


